This function applies variance- or expression-based filtering
across one or more assays within a MultiAssayExperiment object.
It is useful for removing low-quality or uninformative features
before downstream analysis.
Usage
filter_omics(
  expomicset,
  method = c("variance", "expression"),
  assays = NULL,
  assay_name = 1,
  min_var = 1e-05,
  min_value = 5,
  min_prop = 0.7,
  verbose = TRUE
)Arguments
- expomicset
 A
MultiAssayExperimentobject containing omics assays.- method
 Filtering method: either
"variance"or"expression".- assays
 Character vector of assay names to filter. If
NULL, all assays are filtered.- assay_name
 Name or index of the assay within each
SummarizedExperimentto use.- min_var
 Minimum variance threshold (used if
method = "variance").- min_value
 Minimum expression value (used if
method = "expression").- min_prop
 Minimum proportion of samples exceeding
min_value(used ifmethod = "expression").- verbose
 Whether to print messages for each assay being filtered.
Examples
# Filter the proteomics assay by variance
filtered_mae <- filter_omics(
    expomicset = make_example_data(return_mae = TRUE),
    method = c("variance"),
    assays = "proteomics",
    assay_name = 1,
    min_var = 0.01,
    verbose = TRUE
)
#> Ensuring all omics datasets are matrices with column names.
#> Creating SummarizedExperiment objects.
#> Creating MultiAssayExperiment object.
#> MultiAssayExperiment created successfully.
#> Filtering assay: proteomics
#> Filtered 0 of 80 features from 'proteomics' using method 'variance'