Plot Summary of Factor Contributions from Multi-Omics Integration
Source:R/plot_factor_summary.R
plot_factor_summary.Rd
Generates a summary plot of factor contributions from multi-omics
integration results stored in a MultiAssayExperiment
object.
Usage
plot_factor_summary(
expomicset,
low = "#006666",
mid = "white",
high = "#8E0152",
midpoint = 0.5
)
Arguments
- expomicset
A
MultiAssayExperiment
object containing integration results inmetadata(expomicset)$multiomics_integration$integration_results
.- low
Color for low values in the fill gradient. Default is
"#006666"
.- mid
Color for midpoint in the fill gradient. Default is
"white"
.- high
Color for high values in the fill gradient. Default is
"#8E0152"
.- midpoint
Midpoint value for the gradient color scale. Default is
0.5
.
Details
This function visualizes factor contributions based on the integration method:
MOFA: Variance explained per factor and view.
MCIA: Block score weights per omic.
DIABLO: Mean absolute sample score per omic and factor (from block-specific variates).
RGCCA: Mean absolute sample score per omic and factor (from aligned block scores).
The color gradient can be customized using the low
, mid
, high
,
and midpoint
parameters.
Examples
# create example data
mae <- make_example_data(
n_samples = 20,
return_mae = TRUE
)
#> Ensuring all omics datasets are matrices with column names.
#> Creating SummarizedExperiment objects.
#> Creating MultiAssayExperiment object.
#> MultiAssayExperiment created successfully.
mae <- run_multiomics_integration(
mae,
method = "MCIA",
n_factors = 3
)
#> Scaling each assay in MultiAssayExperiment.
#> Running multi-omics integration using MCIA...
#> Applying MCIA with `nipalsMCIA`
#> Performing column-level pre-processing...
#> Column pre-processing completed.
#> Performing block-level preprocessing...
#> Block pre-processing completed.
#> Computing order 1 scores
#> Computing order 2 scores
#> Computing order 3 scores
factor_sum_plot <- mae |>
plot_factor_summary()